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Abstract. Schema matching aims to identify the correspondences among
attributes of database schemas. It is frequently considered as the most
challenging and decisive stage existing in many contemporary web se-
mantics and database systems. Low-quality algorithmic matchers fail
to provide improvement while manually annotation consumes extensive
human efforts. Further complications arise from data privacy in certain
domains such as healthcare, where only schema-level matching should be
used to prevent data leakage. For this problem, we propose SMAT, a new
deep learning model based on state-of-the-art natural language process-
ing techniques to obtain semantic mappings between source and target
schemas using only the attribute name and description. SMAT avoids di-
rectly encoding domain knowledge about the source and target systems,
which allows it to be more easily deployed across different sites. We also
introduce a new benchmark dataset, OMAP, based on real-world schema-
level mappings from the healthcare domain. Our extensive evaluation of
various benchmark datasets demonstrates the potential of SMAT to help
automate schema-level matching tasks.

Keywords: Schema-level matching · Natural language processing · At-
tention over attention.

1 Introduction

The tremendous growth and availability of data can benefit a broad range of
applications such as healthcare, energy, transportation, and smart buildings.
Unfortunately, across many domains, data is collected using a wide variety of
database systems with customized schemas developed for each company or pur-
pose. The customized databases can hinder data exchange, data integration, and
large-scale analytics. Schema matching aims to establish the correspondence be-
tween the fields of a source and target database schema – a decisive initial step in
the standardization of different databases. Automation of the schema matching
task has received steady attention in the database and AI communities over the
years. It has also been adopted as a practical and principled tool to improve the
modeling and implementation of data exchange and data integration [2,22,27].
Yet, this problem remains largely unsolved and still requires significant manual
labor.
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Given the importance of schema matching and the time-intensive nature
of the task, it is crucial to develop new methods to help expedite the pro-
cess. Several automated schema matching methods have been proposed, in-
cluding constraint-based approaches [5,13,34] and linguistic-based approaches
[18,21,24,39]. While the existing methods have achieved high performance in
different domains, they suffer from several limitations. The constraint-based ap-
proaches analyze the element contents, which is not always guaranteed to be the
same across the two schemas. Moreover, it assumes the data on both sides can
be queried, which can violate privacy constraints. For the linguistic approaches,
the relations are hand-coded between the two schemas or may not properly
capture the similarity between the field descriptions. Numerous matching tools
(matchers) can generate correspondences between pairs of schemas [6,13]. Yet
they rely on heuristic techniques. Recently, a deep neural network (DNN)-based
model, ADnEV, was proposed to utilize similarity from existing matchers and
post-process the results to work across domains [36]. However, ADnEV is limited
by the capability of existing matchers and may not generalize to all domains.

Given the rising importance of schema integration involving sensitive data,
such as in healthcare, we focus on schema-level matching rather than instance-
level or hybrid schema matching. This paper posits that the schema matching
process (i.e., source schema elements to target schema elements and its attributes
matching) can be viewed as inferring the relatedness (or similarity) between the
source and target fields. We propose SMAT, a DNN-based model with attention
that extends recent advances in natural language processing and sentiment anal-
ysis. SMAT captures the semantic correlation from the source schema attributes to
the target schema attributes based on the name and descriptions. Moreover, our
model can be used to automatically generate the matching between the source
and target schemas without encoding domain knowledge. We also introduce a
new publicly available dataset that annotates several source to target conver-
sions in the healthcare domain. We perform extensive evaluations of SMAT on
a variety of datasets.

2 Related Work

This section describes the existing works related to schema-level matching that
only considers schema information and not instance data. For a detailed survey
on schema matching, we refer the reader to [34]. Table 1 provides a brief com-
parison of some related works and our model along four categories (i.e., whether
it is schema-level matching, what the match cardinality is, whether it captures
rich text, and whether it utilizes deep-learning framework).

One line of schema matching work is the constraint-based approach. Most
schemas contain constraints to define the attributes such as data types and
value ranges, uniqueness, optionality, relationship types and cardinalities [34].
Similarity can be measured by data types and domains, key characteristics (e.g.,
unique, primary, foreign), and relationship cardinality [1,14,29]. Recently, [3]
proposes a hybrid of the constraint-based approach using key characteristics and
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Table 1: Comparison between different approaches on various categories.

Approach Schema-level Cardinality Rich text Deep learning

Constraint-based [3] No 1:n No No
Linguistic content-based [24] Yes n:1 No No
ADnEV [36] Yes n:1 No Yes
DITTO [27] No n:1 Yes Yes
SMAT Yes n:1 Yes Yes

the instance itself to create the meta-schema. Unfortunately, such approaches
cannot readily handle the n:1 scenario that can be found in schema matching.
For example, if the source schema contains “starttime” and “endtime” and the
target schema contains “Duration”, the meta-schema mapping can not generate
and convert the two attributes into the single target.

An alternative method is the linguistic content-based approach, which utilizes
names and text to explore semantically similar schema elements. There are two
primary linguistic data mapping techniques: name matching and description
matching. The idea behind these techniques is to calculate similarity based on
either the name of the fields or the description of the fields, respectively. In name
matching, the similarity of names can be defined and measured through equality
of names, equality of synonyms, similarity of names based on common substrings
and user-provided name matches. Examples include [20] which helps database
designers visualize similarity and dissimilarity based on attribute names and [40]
which uses a prescribed dictionary to obtain the aggregation among attributes.
However, consulting a synonym lexicon has limitations since it is common to use
abbreviations for attribute names (e.g., DOB for date of birth, SSN for Social
Security number, etc.) and may not identify the relationships.

Description matching is based on the idea that schemas usually contain ele-
ment and attribute names in natural language to express the intended semantics
of schema elements. The process involves the identification of two semi-related
data objects and the creation of mappings between them. In a recent work [24],
the authors utilized the UMBC EBIQUITY-CORE technique [19] to obtain the
similarity of the comments of schemas. Yet, it may not capture the similarity
between the descriptions. For example, the similarity score between “the com-
ment of the book” and “the review of the article” is 0.39 (1 is the same and 0 is
dissimilar). Another work used word embeddings to link datasets [15]; however
it only embeds the table name which may not yield sufficient information.

With the development of DL techniques, entity matching [4,27], ontology
alignment [25], and instance-level schema-matching [26] can utilize rich tex-
tual information to provide better solutions. However, both entity matching and
instance-level schema matching assume the data can be queried on both sides,
which can violate data privacy constraints. For schema-level matching, [31] pro-
posed a probabilistic graphical model and achieved a good score on precision and
recall. Recently, ADnEV was proposed to utilize a DL technique to post-process
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the matching results from other matchers and outperformed existing models.
However, the quality of the matchers limits the potential of the model.

3 SMAT: A DNN Model

We introduce SMAT, an attention-based DNN model to automate the schema
matching between the source and target schemas. We posit that the attribute-
to-attribute matching performed in schema matching can be viewed as inferring
the relatedness (or similarity) between the source and target fields. Under this
paradigm, the data dictionaries containing the tables and attributes descriptions
can be used to automatically capture the semantic correlation between the two
fields without requiring explicit domain knowledge. SMAT extends recent advances
in natural language processing (NLP) and sentiment analysis to encode the field
descriptions for both source and target and determine which two fields are related
to one another. In this section, we formulate the problem and then introduce
the various components of SMAT.

3.1 Problem Statement

Given two table descriptions STS and STT , two attributes names NF1 and
NF2, and their descriptions SF1 and SF2 from the source and target schema
respectively, we construct two sets of sentences. The source sentence set SS =
{NF1, STS + SF1} = {w1, w2, ..., wn} consists of n words, and the target sen-
tence set ST = {NF2, STT + SF2} = {w1, w2, ..., wn′} consists of n′ words. For
the training data, there is an annotated label L(SS , ST ) where 0 denotes two
fields are not related (i.e., not mapped to each other), and 1 denotes two sen-
tences are related (i.e., corresponding attribute-to-attribute matching). Table 2
provides an example of the sentence pair. Thus the task objective is to classify
the semantic relation of each sentence pair to reveal the attribute-to-attribute
matching.

3.2 Overview

The task of determining the relatedness between two attributes descriptions can
be viewed as inferring the similarity of two sentence pairs in NLP tasks. Since
DNNs can be trained end-to-end without any prior knowledge (i.e., no need
to implement feature engineering), they have been utilized for text similarity
tasks. For sentiment classification, InferSent introduced an end-to-end DNN and
achieved a higher performance than existing sentiment analysis models [8]. Yet
there are two major limitations to adopting such models for the schema matching
task. First, the element and attribute description may not contain sufficient
information to distinguish it from others. Second, the descriptions may have
abbreviations or words that have unknown word representations.

To address the above limitations, SMAT consists of 4 major modules (shown in
Figure 1). First, the input embedding of the sentences utilizes a hybrid encoding
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to deal with large vocabularies for any input text. Second, bidirectional Long
short term memory (BiLSTM) networks are used to capture the hidden seman-
tics of the words in the description and the column name separately. Third, the
attention over attention (AOA) mechanism [9] is adopted to model the correla-
tion between the column name and its description to obtain a better sentence
representation.

The final prediction layer uses the sentence representations to make an ac-
curate classification. We also introduce data augmentation and controlled batch
sample ratios (CBSR) to deal with the class imbalance problem that is present
in schema matching tasks.

3.3 Input Embedding & BiLSTM

Existing word embedding models such as GloVe [33] are limited by vocabulary
size or the frequency of word occurrences. As a result, rare words like ICD-
9 result in unknown tokens. Byte-Pair Encoding (BPE) is a hybrid between
character- and word-level representations which can deal with the large vocabu-
laries common in natural language corpora [35]. Instead of full words, BPE learns
sub-words units to tokenize any input text without introducing any “unknown”
tokens.

Thus, SMAT uses BPE to tokenize the input text. Each word/sub-word wi in
the sentence S1 = {w1, w2, ..., wn} is then mapped to a high-dimensional vector
ei, using GloVe embeddings. While we use GloVe due to its popularity, any word
embedding representation can be used.

To capture the contextual nature of the text, a BiLSTM network is utilized
to capture the hidden semantics. Compared with the standard LSTM, BiLSTM
can utilize both the past and the future information to yield better sentence
representations. Thus, after the word embedding is obtained for each set of
words (i.e., attribute name or attribute description), the embeddings are fed to
a BiLSTM network.

3.4 Attention-over-Attention (AOA)

The output of the BiLSTM is dealt with using two approaches. All the informa-
tion in the sequence is captured using the max-pooling operator to compress the
sequence into a single unified vector. However, one limitation of this represen-
tation is the inability to capture interactions between the attribute name and
its description. The second approach uses an attention over attention (AOA)
module to model this interaction. AOA was first proposed for the question an-
swering task [9]. Since calculating the dot product and difference of two sentence
representations fail to capture fine-grained relations on the word level, the AOA
module introduces mutual attention to simultaneously capture the relationships
between attribute name to description and description to attribute name.

Our AOA module captures the correlations between the attribute names and
the text using two mechanisms. Let hc ∈ Rm×2h denote the attribute name
representation, where m is the attribute name length (i.e., number of words in
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Fig. 1: Illustration of SMAT’s structure

the attribute name) and h is the hidden dimension. Let hs ∈ Rn×2h denote the
element-attribute description representation, where n is the description length
and h is the hidden dimension. The module first calculates the pair-wise interac-
tion matrix I = hs · hTc , where the value of each entry represents the correlation
of each word pair between the description and attribute name. A column-wise
softmax and row-wise softmax is applied to the interaction matrix I, to ob-
tain the attribute name to description attention, α, and description to attribute
name attention, β, respectively. Thus for the tth attribute word and kth text
description, the associated attentions are:

α(t) = softmax(I(1, t), I(2, t), · · · , I(m, t)) (1)

β(k) = softmax(I(k, 1), I(k, 2), · · · , I(k, n)) (2)

Then, the attribute name-level attention β̄ is calculated using a column-wise
averaging of β. This attention indicates the important words in the attribute
name. Finally, the sentence-level attention γ ∈ Rn can be obtained by a weighted
sum of each individual attribute name to description attention α. By considering
the contribution of each word explicitly, the AOA module learns the important
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weights for each word in the sentence.

αij =
exp(Iij)∑
i exp(Iij)

βij =
exp(Iij)∑
j exp(Iij)

β̄ =
1

n

∑
i

βij

γ = α · β̄T

The two sets of final description level attentions for the source and target, γs
and γt, are concatenated along with the difference between the two max-pooled
attribute description representations. The new vector representation, P , is sent
to the final classification layer which consists of several fully-connected layers
and a softmax layer to predict whether or not two sentences are related.

3.5 Data Augmentation & Controlled Batch Sample Ratio

As attribute-to-attribute mapping generally results in a skewed distribution,
SMAT uses data augmentation and controlled batch sample ratio (CBSR) to
achieve better predictive performance. Data augmentation occurs on two lev-
els. First is to generate new positive samples using synonyms for different words
in the descriptors. For example, an augmented sample may replace the word
“uniquely” with “unambiguously” and “identify” with “describe”. However, since
the number of synonyms is limited, we utilize a second technique to improve the
attribute name description. We use the part-of-speech (POS) tags for the de-
scriptions and concatenate the identified nouns to enlarge the dataset safely.

Since SMAT uses batch SGD to learn the parameters, a batch can contain no
positive samples and thus only properly learn the representation for negative
samples. Thus, we controlled the ratio of positive samples in each batch size
to ensure that our model learns from a few positive examples for each batch
[12]. Note that since the positive samples are small, they are likely to be chosen
repeatedly, while there is diversity in the negative samples.

4 OMAP: A New Benchmark Dataset

Since existing matching datasets only spans purchase orders, web forms, and bib-
liographic references, we created OMAP, a new benchmark schema-level matching
dataset that annotates several source-to-target mappings in the healthcare do-
main. Healthcare data is collected worldwide using a wide variety of coding sys-
tems. To draw conclusions with statistical power and avoid systematic biases,
a large number of samples should be analyzed across disparate data sources
and patient populations. Such broad analyses requires data harmonization to a
common data standard (e.g., the Observational Medical Outcomes Partnership
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Table 2: An example entry from the OMAP dataset.

CDM schema Source schema
CDM description
(Des 1)

Source description
(Des 2)

Label

person-person id
beneficiary
summary-
desynpuf id

the person domain
contains records that
uniquely identify each
patient in the source
data who is time at-risk
to have clinical observations
recorded within the source
systems.a unique identifier
for each person.

beneficiarysummary pertains
to a synthetic medicare
beneficiary. beneficiary code

1

(OMOP) Common Data Model (CDM) standard) to facilitate evidence gather-
ing and informed decision making [32]. Since patient data cannot be queried due
to privacy concerns, schema-level matching is of great importance. OMAP maps
between three different healthcare databases and the OMOP CDM standard.

1. MIMIC-III [23]: A publicly available intensive care unit (ICU) relational
database from the Beth Israel Deaconess Medical Center.

2. Synthea [38]: An open-source dataset that captures the medical history of
over one million Massachusetts synthetic patients.

3. CMS DE-SynPUF [7]: A set of realistic claims data generated from 5% of
Medicare beneficiaries in 2008.

For each dataset, the element table name with its descriptions and attribute
column name with its descriptions are used to construct a sentence. The label
is based on the final ETL design. If the table-column in the source schema was
mapped to a table-column in the OMOP CDM the label is 1, otherwise it is 0.
Table 2 provides one example from the OMAP dataset.

Table 3: Summary statistics of each conversion captured in OMAP.

Data source # elements # attributes # positive labels # sentence pairs

MIMIC 25 240 129 64080
Synthea 12 111 105 29637
CMS 5 96 196 25632

OMAP currently contains 121,689 matching pairs from three different datasets
and is available publicly on Github3. The summary statistics for each of the
three conversions are captured in Table 3.

Note that the dataset does not contain any patient information, only at-
tributes and their descriptions.
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Table 4: Summary statistics of the additional benchmark datasets used.

Data source # elements # related # pairs # Domains

Purchase Order[11] 50-400 659 63933 1
OAEI4 80-100 9494 825021 1
Web-forms[16] 10-30 5548 201769 18

5 Experiments

We designed the experiments to answer three key questions: (1) How accurate
is SMAT in automating the schema matching? (2) How sensitive is SMAT to the
training size? (3) How important are the different components of SMAT?

5.1 Dataset

We use the OMAP dataset to evaluate our proposed model (see Table 3 and Section
4). We also used three popular schema matching benchmark datasets as shown
in Table 4.

Reference matches in these datasets were manually constructed by domain
experts and considered as ground truth for our purposes. Experiments are per-
formed per dataset consistent with existing schema matching papers [17,31,37].
For each dataset, 80% was used to train the initial prediction model, the 10%
used to further tune the weights, and the remaining 10% used to evaluate the
experiments.

5.2 Baseline Models

SMAT is evaluated against five baseline models. For data sensitivity purposes, we
focused only on schema-level matching. The entity matching solutions that in-
volve semantic relatedness technique are chosen to represent the existing schema
matching or entity matching work.

– ADnEV [36]. A schema matching model that utilizes DNN to post-process
results from state-of-the-art (SOTA) matchers in an iterative manner.

– InferSent [8]. A SOTA sentence embedding model that classifies the sen-
timent between two sentences. The last layer is modified to tackle a binary
classification task. GloVe embeddings [33] are used for the input sentences.

– DeepMatcher [30]. An entity matching solution that customizes the Recur-
rent Neural Network (RNN) architecture to aggregate the attribute values
then compares the aggregated representations of attribute values.

3 https://github.com/JZCS2018/SMAT
4 The OAEI competitions can be found at http://oaei.ontologymatching.org/

2011/benchmarks/

https://github.com/JZCS2018/SMAT
http://oaei.ontologymatching.org/2011/benchmarks/
http://oaei.ontologymatching.org/2011/benchmarks/
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Table 5: Comparison of precision (P), recall (R), and F1 (F) on the datasets.

Dataset
ADnEV InferSent DeepMatcher DITTO BERT SMAT

P R F P R F P R F P R F P R F P R F

MIMIC 0.08 34 0.16 9.8 76.9 17.4 0.04 38.1 0.09 0.3 46.2 0.6 0.4 84.6 0.7 11.5 84.6 20.2

CMS 0.49 44 0.97 20.8 80.0 32.9 0.31 60.7 0.62 2.4 40 4.5 2.4 55.0 4.5 33.9 95.0 50.0

Synthea 0.14 21 0.28 19.2 90.9 31.7 0.06 48.8 0.13 0.7 63.6 1.3 0.9 100 1.8 24.4 90.9 38.5

Purchase Order 80 77 78 14.3 59.6 23.1 48.9 80.2 60.8 54.5 98.6 70.2 54.0 98.2 69.7 57.9 99.5 73.2

OAEI 78 76 76 84.5 99.9 91.5 56.1 62.9 59.3 80.5 99.9 89.2 78.3 99.8 87.8 87.8 99.9 93.5

Web-forms 81 69 72 68.4 99.8 81.2 48.2 74.5 58.5 68.8 95.5 80 63.5 96.3 76.5 79.1 99.3 88.1

Average 34.3 49.9 32.5 33.6 78.2 43.3 22.0 56.8 25.8 29.7 69.4 35.4 28.6 88.8 34.7 45.7 87.0 56.3

– DITTO [27]. A SOTA entity matching model that cast the problem as
a sequence-pair classification and fine-tunes RoBERTa [28], a pre-trained
Transformer-based language model.

– BERT [10]. Bidirectional Encoder Representations from Transformers (BERT)
has achieved SOTA results in many natural language understanding tasks.
We fine-tuned the pre-trained BERT-base-uncased model on our datasets.

5.3 Experimental Setup

We implemented SMAT and the baseline models in Python 3.6 using PyTorch.
Our code is made publicly available on Github5. Performances were measured
on the Google Cloud Platform with Intel Xeon E5 v3 CPU @ 2.30Ghz, and a
Nvidia Tesla K80 with 12 GB Video Memory.

For experiments in this paper, the embedding dimension is 300. The number
of hidden units of BiLSTM is 1024 for InferSent and 300 for SMAT. For the
classification model, we apply a fully connected layer with one hidden layer of
512 hidden units. Stochastic gradient descent is chosen as the optimize algorithm
with a batch size of 64. The learning rate and weight decay are 0.1 and 0.99 for
InferSent and 0.001 and 0.99 for SMAT. For AdnEV, DeepMatcher, DITTO, and
fine-tuning BERT model, Adam is chosen as the optimization algorithm with
a learning rate of 0.001, 0.001, 3e − 5, 2e − 5, respectively, and the batch size
as 64, 64, 64, and 32 respectively. These parameters were obtained from initial
experiments on a subset of the training data as they provided the most robust
performance across multiple runs.

6 Results

6.1 Predictive Performance

Evaluation of SMAT with existing baseline models. Table 5 summarizes the
results of the six models tested on the six datasets. We observe that the precision
and recall varies depending on the dataset suggesting differences in the seman-
tic content of their attribute names and descriptions. The results demonstrate

5 https://github.com/JZCS2018/SMAT

https://github.com/JZCS2018/SMAT
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that SMAT does not require additional hand-coding due to the overall strong per-
formance. It achieves the best performance across all three metrics in 3 of the
datasets (OAEI, MIMIC, CMS). It also yields the best F1 score for all but the
Purchase Order dataset. Thus, our proposed model is fairly versatile.

ADnEV achieves a higher precision on Purchase Orders and Webforms and
a better F1 score on Purchase Orders than others. Yet, SMAT outperforms the
ADnEV model on OAEI and Web-forms in terms of F1 score by 12.4% and 16.1%
respectively. Moreover, the results on the OMAP datasets illustrate the pitfall of
ADnEV. Since ADnEV leverages other matchers, it is limited by the capability of
the matchers. Thus, ADnEV may not be suitable for all domains. Furthermore,
comparisons of the DNN-based models (InferSent, Fine-tuned BERT, and SMAT)
and ADnEV in terms of F1 and recall also illustrate the power of end-to-end
training without requiring additional feature engineering.

For the OMAP dataset, SMAT achieves a higher precision and recall score sug-
gesting that the prediction capability of SMAT is better than the other mod-
els. However the precision across these four datasets are noticeably lower than
those of Purchase Order, OAEI and Web-forms. This may be a result of the
more complex textual information in the healthcare domain. Moreover, there
are many abbreviations which can prevent the general model from achieving a
higher score. This highlights the importance of benchmarking the models across
various applications and supports the development of OMAP.

The results also capture the difference that arises from schema-level match-
ing. Even though DITTO and DeepMatcher perform well in the entity matching
task, they do not offer comparable performance across the different datasets.
This may be due to the inconsistencies across the datasets present in the textual
information. Moreover, InferSent seems to provide better F1 scores compared to
the more complex transformer models outside of the Purchase Dataset. This sug-
gests that the Bi-LSTM based sentence modeling approach shared by InferSent
and SMAT may offer better predictive power compared to the more complex
transformer-based models. In comparing InferSent and SMAT, the results suggest
that SMAT’s attention mechanism and representation can help capture the ele-
ments and attributes in source schema and target schema differences better than
the other models regardless of whether the textual information is rich (OMAP) or
not (Purchase Order, OAEI and Web forms).

Analysis on Web-form, a cross-domain schema matching. The Web-
forms dataset contains 18 domains to represent the cross-domain matching task.
Figure 2 analyzes the match quality per domain and compares the results be-
tween SMAT and ADnEV since ADnEV achieves the best precision. From the
results, we observe that SMAT outperforms ADnEV across all the domains in
terms of recall. Moreover, for the majority of the domains, SMAT offers better
precision and F1 score over ADnEV. For example, the Webmail, Finance, and
News domains are difficult for the ADnEV model. For example, existing match-
ers fail to identify the mappings Measures the price performance of a stock in
comparison to all other stocks (12 Month Relative Strength)↔ YTD total return
and Mailbox ↔ @gmail.com (Email). However, SMAT can capture the semantic
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Fig. 2: Comparison by domain between ADnEV and SMAT

Table 6: Computational efficiency of the different methods on the Synthea
dataset.

Model
Training time
(sec/epoch)

Inference speed
(sentence/second)

ADnEV 90 52
InferSent 86 275
DeepMatcher 113 209
DITTO 95 249
Fine-tuned BERT 127 186
SMAT 101 234

meaning of these pairs. The results also demonstrate that ADnEV performs bet-
ter on the domain Forums and Hotels than SMAT. This is because SMAT excludes
the number and type constraints in the element and attribute.

6.2 Computational Efficiency

Table 6 summarizes the training time and inference speed for the six differ-
ent methods using the same computer hardware on Synthea dataset. Of all the
DNN-based models, InferSent is the most computational efficient (i.e., lowest
training time and highest inference speed). However, the quality of the predic-
tion is significantly lower especially with respect to precision as shown in Table
5. With a slight increase in training and lower inference speed, SMAT provides
the best overall predictive performance across the different datasets. It is also
worthwhile to highlight that ADnEV takes less training time but the inference
speed is substantially slower due to the need to post-process the results. Al-
though DITTO is based on pre-trained Transformer-based language models, the
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Fig. 3: F1 score (left) and running time (right) per epoch when varying (%) of
training data

computation efficiency is better than fine-tuned BERT due to optimization de-
tails. Such optimization techniques can be adapted in our implementation for
improved speed.

6.3 Training Size Sensitivity & Scalability

We assessed the robustness of SMAT to the size of the training data. We varied
the amount of data used to fit SMAT and evaluate its impact on the test dataset
performance. Figure 3 illustrates the results on the six different datasets in terms
of F1 score and running time. From the results, we notice that SMAT achieves
a decent F1 score with only about 20% training data (the lone exception is
Purchase Orders) and can save 30% of the training time. We also notice that
the running time per epoch is fairly linear suggesting that SMAT is scalable.

6.4 Ablation Study

To gain further insights of the various components in SMAT, we examined the
effectiveness and contributions of the attribute name input, the AOA module,
and the two different class imbalance approaches.

– SMAT w/o AOA: The AOA module is removed and instead the outputs of the
attribute name BiLSTM and description BiLSTM are max-pooled together
and concatenated with the difference of the two descriptions.

– SMAT w/o column: The attribute name is omitted and only the description
is fed into the AOA module to calculate the mutual information with itself.

– SMAT w/o DA: The data augmentation with additional positive samples and
concatenation of nouns to the column name is omitted.

– SMAT w/o CBSR: The batch size is randomly sampled without ensuring pos-
itive samples are present in each batch.

The results of the ablation study are shown in Table 7. It can be seen that the
SMAT model outperforms the rest of four models on F1 and most precision. In par-
ticular, comparing the result with SMAT w/o AOA illustrates the importance of
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Table 7: Results for ablation experiments on Precision (P), Recall (R), and F1
(F).

Dataset
SMAT w/o AOA w/o column w/o DA w/o CBSR

P R F P R F P R F P R F P R F

MIMIC 11.5 84.6 20.2 10.3 84.6 18.3 10.2 84.6 18.2 10.7 69.2 18.6 0 0 0

CMS 33.9 95.0 50.0 23.5 80.0 36.3 25.4 80.0 38.6 25.8 80.0 39.0 0.13 15.6 0.25

Synthea 24.4 90.9 38.5 15.3 90.0 26.1 20.0 100 33.3 36.4 36.4 36.4 0 0 0

Purchase Order 57.9 99.5 73.2 17.7 50.0 26.2 26.9 30.3 28.5 42.1 98.2 58.9 10.7 38.2 16.7

OAEI 87.8 99.9 93.5 83.0 99.9 90.7 83.8 99.9 91.2 85.9 99.9 92.4 35.9 72.5 48.0

Web-forms 79.1 99.3 88.1 75.7 96.7 84.9 76.4 93.5 84.1 70.0 99.8 82.3 32.5 68.4 44.1

the AOA module. The module captures the interaction between the attribute de-
scription and the correlated attribute name better than max-pooling the outputs
from BiLSTM. The same conclusion can also be drawn by comparing SMAT w/o
AOA and SMAT w/o column, the precision of the former is lower than the latter.
Even without the attribute name feature and the associated data augmentation,
the AOA module can still generate more useful features.

The ablation results also highlights two benefits of the model. First, the
attribute name is important as there is a noticeable drop in precision across all
the datasets when comparing SMAT w/o column with SMAT and SMAT w/o D/A.
Second, the two techniques for dealing with class imbalance play a crucial role
towards improving the predictive power of the model. The results of SMAT w/o
DA and SMAT w/o CBSR shows that CBSR is more effective toward combating
the skewed data than data augmentation method due to the higher precision
values of the former model.

7 Conclusion

This paper proposes an automated schema-level matching model based on the
semantic meaning of the descriptions. This is particularly beneficial for schema
integration involving sensitive data, such as healthcare domain. The extensive
experiments on a variety of datasets illustrate that SMAT serves as the SOTA
solution for the schema-level matching task. This paper also introduces a new
benchmark dataset, OMAP, that captures three different dataset conversions from
the healthcare domain. As shown in the experiments, OMAP can help assess the
generalizability of schema-level matching models.

Although the empirical results of SMAT are not yet high enough to be put
into practice, this work illustrate the potential of automating schema matching.
Future directions include collecting more data to improve the sentence embed-
ding quality, exploring other DNN architectures to tackle the class imbalance
problem, and incorporating instance-level features to obtain a robust hybrid
schema-level and instance-level model.
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